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Abstract

The paper deals with the problem of design laminated plates possessing the given stiffnesses. The following two
design problems are considered: (1) the continuous design problem (when one can use materials with any elastic
characteristics to manufacture the plate); (2) the discrete design problem (when one can use a finite set of materials). It is
known that design problems are closely related with convex analysis problems. It is shown that the laminated plate
design problems are related with the convex combinations problem (CCP).

Using the CCP technique, one can analyze the laminated plate design problems in detail. This paper is concentrated
on the general solution of the design problem (i.e. the set of all solutions of the problem). The general solutions are
constructed for both the continuous and the discrete design problems. The methods developed in the paper can be used
to solve the design problem numerically. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Laminated plates are widely used in the modern structures. In many cases the plate can be effectively
used if it has prescribed properties. It leads to design problem. In its engineering arrangement, this problem
has the following form: the material characteristics of laminas and distribution of laminas must be specified
so that a plate formed from them will have a given set of stiffnesses.

Numerous investigators analyzed the design problem for laminated plate. It is impossible to give a full
list of the papers devoted to this problem here (see the book by Zafer et al. (1999) giving an introduction
into the modern state of the problem and references). The most part of the papers was devoted to the
optimal design problem formulated as follows: Find a design giving to the plate an optimal property (for
example, the minimal weight or the maximal stiffness). The design problem considered in this paper is
formulated as follows: Find a design giving to the plate the required property (in particular, the optimal one).
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Generally, the design problem may not have a unique solution. This means that a plate, which possesses
a given set of stiffnesses, can be designed in many ways. This paper is concentrated on description of all
possible designs.

The relationship between the overall properties of an inhomogeneous plate and the properties of the
materials forming the plate is established by the homogenization theory (see Kalamkarov and Kolpakov
(1997), Caillerie (1984), Ciarlet (1990), Destuynder (1986), Kohn and Vogelius (1984) and Panasenko and
Reztsov (1987)). In the general case this relationship is very complex. For a laminated plate the local
material characteristics depend on only one spatial variable. This makes it possible to obtain explicit
formulas for calculation of the stiffnesses of laminated plates and to reduce the design problem to an in-
tegral equation of first order.

For laminated solids the design problem was solved by Kolpakov and Kolpakova (1991, 1995) using the
convex combinations problem (CCP) technique. The laminated plate design problem involves the coor-
dinate across the plate. It changes the problem drastically. For the case when there are no restrictions on the
constitutive materials (materials with any characteristics are available to manufacture the plate) the plate
design problem can be analyzed on the basis of Pontraygin’s extremal principle (see Kolpakov (1989)) and
the set of possible values of stiffnesses can be described. In the present paper this problem is analyzed on the
basis of the CCP technique. This approach provides information not only about the stiffnesses but also
about the general solutions of the problem.

In many cases one can use a finite set of materials to manufacture the plate. It leads to the mathematical
formulation of the problem in the form of a discrete problem (some analog of an integer-programming
problem). The problem arising is called below the discrete CCP. A method for solution of the discrete CCP
is developed. The method can be used to solve the discrete design problem numerically.

The paper is organized as follows. In Section 2 the statement of the problem is given. In Section 3 some
results concerning the CCP are presented. Sections 4 and 5 deal with the continuous design problem.
Section 6 is devoted to plates of symmetrical structure. In Section 7 the discrete design problem is for-
mulated and reduced to a discrete CCP. In Section 8§ a method solution of the discrete CCP is described.
Sections 9 and 10 are devoted to the case when the stiffnesses are given of non-exactly or a combination of
stiffnesses is given.

2. The statement of the problem

Let us consider a laminated plate formed from layers of homogeneous isotropic materials parallel to the
Oxx; plane (Fig. 1).

Denote by z = x3/h the undimensional coordinate transverse to plate (4 means the total thickness of the
plate). The material characteristics of the plate (Young’s modulus E(z) and Poisson ratio v(z)) are functions
of the variable z. The stiffnesses of the plate (the in-plane stiffnesses S7,,, the coupling stiffnesses S, and the
bending stiffnesses S7,, ijkl = 1,2) are related with the variable z and the functions E(z), v(z) by the fol-
lowing formulas (see e.g. Kalamkarov and Kolpakov (1997)): (u=0,1,2; i,/,k,1=1,2)

the "standard" layer

the "thick" layer (two
adjacent standard layers
occupied the same material

x2

Fig. 1. The laminated plate.
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e / E()= /(1 —v2(2))dz = St for ijki = iiii 2.1)
~1)2
12

h““/ E@)/(1 +v(z))dz = 8%, for ijkl = 1212,2121 (2.2)
_1/2
12

h““/ EG@v()2 /(1 —v(2))dz = ', for ijkl = 1122,2211 (2.3)
iy

The other stiffnesses are equal to zero.

With regard to the formulas (2.1)—(2.3) the design problem may be formulated as follows: Solve the Eqs.
(2.1)~2.3) for (v,i,/,k,1) € S with respect to the functions E(z) and v(z). Here S means the indices of the
given stiffnesses (all or only some of the stiffnesses may be included in the set S of the given stiffnesses).

Let us consider the case v = const. In this case the problems (2.1)—(2.3) may be reduced to the problem of
the form

1/2
/ E(z)z'dz=8", u©u=0,1,2 (2.4)
—1/2
with respect to the unique function E(z). The quantities S* in (2.4) are expressed through the given stiff-
nesses S;;.

Note 2.1: If the number of layers is large (the thickness of layer is small compared with the thickness of
plate) the stiffnesses may be calculated using the classical formulas (S7,,, = EA*/(1 — v?) and so on) where
the Young’s modulus E and the Poisson’s ratio v are calculated in accordance with the homogenization
procedure for 3-D body (see for details Kolpakov (1982)). If the number of layers is not large this method
can lead to incorrect results.

Note 2.2: If v # const, we can solve the problems (2.1)~(2.3) with respect the functions I,(z) =
E(z)/(1 =V*(2)), L(z) = E(z)/(1 +v(2)), 3(z) = E(z)v(z)/(1 — v*(z)) and then construct the general solu-
tion, (see Kolpakov (2000)).

3. The convex combinations problem

Analyzing the design problem, we will use the methods based on the CCP technique developed by
Kolpakov and Kolpakova (1991, 1995). Given here some results from Kolpakov and Kolpakova (1991,
1995) (see also Kalamkarov and Kolpakov (1997)), which will be used in the next sections.

Let {v;, i=1,...,m}, v e R" be given vectors. Consider the following problem with respect to the real
numbers {x;, i=1,...,m}:

i:vix,- =YV (31)
i=1

=1, 0<x<l1 (3.2)
i=1

It is the so-called CCP. It is known (see Kolpakov and Kolpakova (1991)) that the set A(v) of all
the solutions of the problems (3.1) and (3.2) (the so-called general solution) is given by the following
formula
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M
X = Pyl i=1,....m (3.3)
=1
where {P, = (Py,,...,P,), y=1,...,M} is a finite set of solutions of CCP; M is the total number of these
solutions; and {4,, y =1,...,M} are arbitrary real numbers satisfying the conditions
M
> =1, 0<i<I1 (3.4)
y=1

or, that is the same, the set A(v) can be represented as
A(v) =conv{P,, y=1,...,M} (3.5)

‘conv’ means the ‘convex hull’ (Rockafellar (1970)).
Note 3.1: An algorithm for calculation the solutions {P,, y=1,...,M} was developed by Kolpakov
and Kolpakova (1991, 1995) (see also Kalamkarov and Kolpakov (1997)).

4. Design of laminated plates with the required bending stiffness

The bending stiffness S7,,, of the laminated plate is calculated as (see Eq. (2.1))
1/2
S2,, =K /12(1 —v?) /1/2E(Z)szz (4.1)
The design problem is formulated as follows: Find all distributions of Young’s modulus E(z) which
satisfy Eq. (4.1) with the given S3,,.
Eq. (4.1) is not a CCP. Nevertheless, we can transform it into a CCP. Introduce the new measure u
determined by the equation: du(z) = z*dz (u(z) = (z*/3) + (1/8)). Then Eq. (4.1) becomes
4/24
1255, (1 = )/# = [ E@)duc) (42)

2/24

For a plate formed of m homogeneous materials we can rewrite Eq. (4.2) as the following CCP
ZEiHi =C, Z#i =1/12, 1, >0 (4.3)
i=1 i=1

where C = 1253,,(1 —v*)/h*. Introducing the variables x; = 12;, we can write the problem (4.3) in the
forms (3.1) and (3.2).

In accordance with Egs. (3.3) and (3.4) we can write down the general solution of the problem (4.3) in the
form

M M
w;=1/123 Py, forany {2,>0}suchthat) 1, =1 (4.4)
=1

y=1

Consider the domain M, = {u: E(u) = E,} corresponding to the pth material (p =1,...,m). Note that
M, is not the domain occupied by the pth material and measure , of M, is not the volume ratio of the pth
material. In order to find the design we must return to the initial coordinate z. This procedure is illustrated
in Fig. 2 for the case of a plate made of two materials. The curve in Fig. 2 is the graph of the function
w(z) = (2/3) + (1/8). The solutions presented in Fig. 2(b) and (c) are corresponding to the maximal and
the minimal volume ratio of phase in composite.
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Fig. 2. Two-material designs of laminated plate with the same bending stiffness according to different distributions of the sets M;, M,
(having measures y; and u,, respectively). The sets M, and M, are distributed in Ou axis. The plate structure arises in Oz axis.

5. Design of laminated plate with the required in-plane and bending stiffnesses

The in-plane stiffness SY|,, of the laminated plate is calculated as (see Eq. (2.1))
1/2
St =h/(1 =) [ Bz 51)
~1/2
The equality (5.1), be considered with respect to the function E(z) taking m possible values, is a CCP. Its
solution is given by the formula (2.3).
Introduce the set L, = {z: E(z) = E,} — domain occupied by the pth material (p = 1,...,m). The measure
x, of L, is the volume ratio of the pth material.
Consider the design problem when only two materials are available. In this case the variable x; takes
values x| and x,; and the variable y, takes values y; and yu,. The condition that the plate has the in-plane
stiffness S7,,, and the bending stiffness S7,,, can be written in the form (see Sections 3 and 4)

K K
ZLr = X1, ZMr =M (52)
r=1 r=1

where x| is any solution of CCP corresponding to Eq. (5.1) and g, is any value given by Eq. (4.3).

Here {M,} mean the lengths of the intervals forming the set M, (see Section 4) and {L,} means the
lengths of the intervals [ay., as41] (r =1,...,K) forming the set L.

In addition to Eq. (5.2) we have the following condition

A1
M, = 2dz (5.3)
a,

Systems (5.2) and (5.3) are solvable only if S?,,, € [Lmin, Lmax)> Where Ly, is determined in Fig. 2(b) and

Luin 1s determined in Fig. 2(c).

5.1. The partial solutions of the design problems (5.2) and (5.3)
A partial solution of the problems (5.2) and (5.3) can be constructed in the following way. Let us in-

troduce an interval [a, b] whose length M is equal to x; (it is the interval occupied by the first material). We
will obtain a partial solution of the problem if we find @ and b such that the following equation is satisfied

b
/ Zdz=p andb—a=x (5.4)
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Eq. (5.4) can be written as
Fx)=p, 0<x<x+x<1 (5.5)

where

X +x
F(x):/ Z2dz = p,

This equation with respect to the variable x can be solved numerically (Minoux (1989)).
One can consider the more general case when the first material occupies K layers (the thicknesses and the
positions of the layers are unknown). In this case we come to the following equation

K a+x,
F(X) = Z/ Zz dz = Hys Qo +x < Ax(r+1) (56)

r=1 v ar
which is an algebraic equation for a function of 2K variables. It can be solved numerically (Minoux (1989)).
Note 5.1: The number K of the layers is arbitrary. It is interesting to know the minimal number of layers
sufficient to design the plate.

5.2. Solution corresponding to the minimal number of layers

Consider the following problem: Indicating the minimal number of layers that allow designing a plate
with every possible value of stiffnesses. A problem of such kind (different from the problem considered here)
was analyzed by Kolpakov (1989).

In the case under consideration (remember that we consider plates made of two materials) solution is the
following: the first material must be distributed among fwo (not more) layers.

Really, solutions corresponding to L, and Ly.x are not more than two layers solutions; see Fig. 2(b) and
(c) (here we say about the layers occupied by the first material). The problems (4.1) and (5.1) continuously
depend on the function E(z). Then, continuously transforming the function E(z) from the first solution to
the second solution (obviously, it is possible) one obtains solution of the problems (4.1) and (5.1) for every
S12111 € [LmimLmax]-

Reminding about the second material forming the plate, we conclude that the total number of layers is
equal to five.

Thus, solution of the problem (5.6) with K = 2 provides a design for every possible values of in-plane
and bending stiffnesses. The problem (5.6) with x € R?> may be solved numerically (Minoux (1989)).

Note 5.2: The results obtained in Sections 4 and 5 may be useful in design of plates of symmetric (with
respect to the plane z = 0) structure. For the non-symmetrical plates it is necessary to take into account the
coupling stiffnesses.

6. The plates of symmetrical structure

Let us consider a plate with balanced placement of laminae about Oxx, plane (called also plates of
symmetrical structure). For such a plate all the out-off-plane stiffnesses S}jk, = 0 and, consequently, Egs.
(2.1)—(2.3) with v = 0,2 (or Egs. (4.1) and (5.1)) represent the general form of the problem.

Consider the case when the stiffness SY,, is fixed. Using the designs presented in Fig. 2(b) and (c) we can
find that the bending stiffness S7,,,, can take any value between the minimal value

3
(S?m/h*EZ)
(B — E2)°

h3
12(1 —v2)

Smin = +E;
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and the maximal value

L _ (S?m/h*El)3

Smax =
12(1 —v?) (E, — E,)

+ E

Here E| > E, are Young’s modulus, v is the Poisson’s ratio (it is assumed the same for both the materials), /
is the thickness of the plate.

We can obtain designs of the plate using the procedure described in Section 4. In order to obtain a
symmetric design we must distribute the sets M, in Ou axis symmetrically with respect the line u = 1/2.

7. The discrete design problem

In the following sections we consider the case when a finite number of materials (indexed by the numbers
1,...,n) is available to manufacture the plate. It means that the function E(z) takes values in a finite set
Zn = {Ela s 7En}'

Let us divide the segment [—1/2,1/2] (the plate thickness in undimensional variable z) into m intervals
[-1/2+ (i—1)/m,—1/2 +i/m). It means that we divide the plate into m laminae of thickness 1/m. The
function E(z) is constant over the interval [—1/2 4+ (i — 1)/m, —1/2 +i/m).

Note 7.1: If the function E(z) takes the same value in adjacent intervals it means that the material oc-
cupies a “thick” layer.

Denote
1/2+i/m 1/2+i/m
=0 / Zdz dy =06 / o=1/m
1/2+(i— 1/2+(i—1

Then the design problem (2.4) may be written in the form

ZE,& = SO, ZEid1i5 - Sl, ZEid2i5 - S2 (71)

i=1 i=1 i=1

where {E; € Z,, i=1,...,n} are unknowns. The unknowns E; > 0 in accordance with the nature of

Young’s modulus.
The problem (7.1) can be written as

f:x,- =1, x €2, ix,-v,- =v (7.2)
i=1 i=1

where x; = E;6/S°, v, = (dy;, dy), i=1,...,m; v=(S'/S° S?/8%).

8. The discrete convex combinations problem
We consider the problem (7.2) in the general form. Let Z, C [0, 1] be a finite set (consisting of #n num-

bers); {v;, i=1,...,m}, v € R be the given vectors. Consider the following problem with respect to the
numbers {x;, i=1,...,m}:

iv,—xi =v (8.1)
-1
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m
d =1 (8.2)
i=1

X €Z, i=1,....m (8.3)

The problems (8.1)—(8.3) will be called a discrete CCP.

In this section we construct the general solution of the problems (8.1)—(8.3) — the set A(v) of all the
solutions of the problems (8.1)—(8.3).

Omitting the condition of discreteness (8.3) in problems (8.1)—(8.3), we obtain a continuous CCP (3.1)
and (3.2). The general solution A(v) of the continuous CCP (3.1) and (3.2) is given by the formulas (3.3) and
(3.4).

Then to solve the discrete problems (8.1)—(8.3) it is sufficient to select in A(v) the vectors whose coor-
dinates satisfy the condition (8.3).

Present an algorithm performing this selection. Problems (3.3) and (3.4) may be considered as CCP (with
respect to unknowns 4,). We must find x,, ..., x, for whose the CCP (3.3) and (3.4) is solvable and which
belong to the set Z,. We use the following property of CCP (see Kolpakov and Kolpakova (1991, 1995)): If
the first (i — 1) equations in (3.3) with the conditions (3.4) are satisfied then the ith equation in Eq. (3.3) is
solvable if and only if

X; € [min;, max;] (8.4)
From Eq. (8.4) we obtain the following necessary and sufficient condition solvability of the discrete CCP:
Z(i,x(i — 1)) = Z, N [min;, max;] # J foranyi=1,...,m (8.5)

Now we describe an iterative algorithm constructing all the vectors x satisfying (8.5).

e In the first step we take an arbitrary start point 7(0) = {xo} (the root of a tree 7).

e In the (i — 1)th step we have a set 7(i — 1) of the points {x(i — 1)} = {(x0,...,x-1): x1,...,x;1 € Z,} for
which the first (i — 1) equations in Eq. (3.3) with the condition (3.4) are solvable. Let us calculate the
intervals Z(i,x(i — 1)) corresponding to all the vectors x(i — 1) € T(i — 1). After that let us construct
the set 7(i) of all the vectors of the form x(i) = (xo,...,x_1,x;) where (xg,...,x1)=x(i—1)¢€
Ti—1)andx; € Z,NZ@E,x(i— 1)) (if Z,NZ3i,x(i — 1)) # &).

o IfZ,NZ(i,x(i — 1)) = & for every x(i — 1) € T(i — 1) then stop (the discrete CCP is not solvable).

e If i = m then stop (the discrete CCP is solvable).

The tree 7(m) has the following property. If the mth level of the tree 7'(m) is not empty then the discrete
CCP (8.1)(8.3) is solvable (otherwise it has no solution) and any vector x(m) € T(m) (a branch of the tree)
is solution of the discrete CCP (8.1)—(8.3). On the other hand any solution x of the discrete CCPs (8.1)—(8.3)
is a branch of the tree T'(m). It means that the set of all the branches (xi, ..., x; ;) (is not taken into account)
of the tree T(m) is the general solution A(v) of the discrete CCP.

8.1. Numerical algorithms

Transition from CCPs (3.1) and (3.2) to CCPs (3.3) and (3.4) — calculation of the vectors
{P,, y=1,...,M}: The vectors {P,, y =1,...,m} may be calculated on the base of the convolution al-
gorithm presented in Kolpakov and Kolpakova (1991).

Calculation of the intervals [min;, max;|: In order to calculate the interval [min;, max;| the simplex method
can be applied. Using this method, we consider at the (i — 1)th step the first i — 1 equations in (3.3) and the
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condition (3.4) as a restrictions and introduce the coast function L(4) corresponding to the ith equation in
Eq. (3.3) in the following way

M
L(2) =Y Py,
y=1

After that we find min; (max;) solving the problem
L(A) — min(max)

with the restrictions described above.
Advantage of the method based on the simplex method is that this method does not generate large data.
The tree T(m): The tree can be realized on the base of any known data structure.

8.2. Numerical calculations

The results of numerical calculations are presented in Kolpakov (2000).

9. The design problem for the stiffnesses given not exactly

As was noted by Kolpakov (2000) often there exist the designs, which do not satisfy the equations in Eq.
(7.2) exactly but satisfy these equations approximately. It is clear that these solutions may be suitable for
the practice. We write the design problem giving these solutions.

Let us consider the problem (7.2) with the condition that the quantities S*, u = 0, 1, 2 belong to intervals
[S* — 68", 8" 4+ 6S*], n =0, 1,2, where 6S*, n =0, 1,2 are the allowed derivations of these quantities from
the required values S*, n =0, 1,2.

It means that we can write Eq. (7.1) in the form

S'—08' <Y ES<S 468, §'-08'<D Edis<S' + 68,

i=1 i=1

§? =08’ <Y Eidy6 <S> + 88 (9.1)

i=1

Introducing the additional variables x,,., .. .,X,.5, we can write Eq. (9.1) in the form:

D X = e = 14068%/(8° = 65°),

- . (9.2)
Zdlixi + X2 = U1, Zdlixi —Xp3 =01 + 5S1/(Sl — o8,

i=1 i=1

Zdz,‘)&f,‘ —I—xm+4 =1y, Zdz,-x,» — Xpis = U2 + (SSz/(SZ — (3S2),
i=1 i=1

where d,;, dy; are determined in Section 6 and x; = E;6/(S° — 8S°), v; = (S' + 081 /(8! — 6S1), v, = (S* +
552)/(S2 — 62).
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The problem (9.2) can be transformed into CCP. Note that the problem (9.2) itself is not a CCP because
the first equation in Eq. (9.2) does not include all the variables.

10. The case when a combination of stiffnesses is given

Consider the case when we want to give a required value not to the stiffnesses themselves but to some
combination of the stiffnesses. The design criterion takes the form

D(S}) = Do (10.1)

where D is a known function.
Denote by L the set solutions of Eq. (10.1) with respect to Sj;,. Note, that S}, are not the design
variables. Then the design problem is reduced to the following

Sta=1 1€l (10.2)

For any 1 problem (10.2) can be solved as above and write the general solution A of the problem (10.1) in
the form A = J,_, A(1), where A(l) means solution of Eq. (10.2) for a fixed 1 € L.

An example. The numerical values of the coupling and bending stiffnesses depend on choose of the coor-
dinate system. Consider the stiffnesses S{‘jk, and Sfj‘.k,(h) and quantities $* and S*(h) (2.4) (u=0,1,2)
computed with respect to coordinate systems z and z + 4 (4 is an arbitrary number), correspondingly. The
quantities S* and S*(h) are related as follows (see Kolpakov (1999)):

S'h)=S°, S'(h)=S"+hnS", S*(h) =S+ 2hS" 4 KS° (10.3)

Using Eq. (10.3), we can form the following two invariants (functions depending on S{‘jk,, but not de-
pending on A):

Di(Sy) = S"(h)/(1 =), Da(Spyy) = (S°(h) = (S ())*/S°(h))/(1 = ) (10.4)

In Eq. (10.4) v means the Poisson’s ratio.

The invariants (10.4) represent the physical in-plane and bending stiffness. In particular, D,(S};,) is the
bending stiffness computed in the coordinate system such that S'(h) = 0.

In the case under consideration the system (10.2) takes the form

1/2 1/2 1/2

/ E(z)dz = S°, / E(z)zdz = I, / E(z)7*dz = §* — I*/S° (10.5)

~1/2 —1/2 -1/2

where [ is an arbitrary number (a parameter). Analyzing the second integral in Eq. (10.5), we find that
Emax - Emin Emax - Emin:|

lel=|—
€ g 3

correspondingly.
The method developed in Sections 4-6 is suitable to solve the problem (10.5) with / = 0 and the method
developed in Sections 7 and 8 is suitable to solve the problem (10.5) with arbitrary /.

, where Ep.x and E;, mean the maximal and minimal values of E(z),

11. Summary

It was shown that the laminated plate design problem is related with the CCP. To write the CCP cor-
responding to the plate design problem we proposed to use Young’s modulus as coefficients of the convex
combinations.
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We considered the continuous design problem (when one can use materials with any elastic character-
istics to manufacture the plate) and the discrete design problem (when one can use a finite set of materials).

Using the CCP technique, we analyzed the continuous design problem in details. In particular we de-
scribed the general solution (the set of all solutions) of the continuous design problem.

We presented a method solution the discrete CCP. This method can be used to solve the discrete design
problem numerically.
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